Random Coefficient Models for Time-Series–Cross-Section Data: Monte Carlo Experiments

نویسندگان

  • Nathaniel Beck
  • Jonathan N. Katz
چکیده

This article considers random coefficient models (RCMs) for time-series–cross-section data. These models allow for unit to unit variation in the model parameters. The heart of the article compares the finite sample properties of the fully pooled estimator, the unit by unit (unpooled) estimator, and the (maximum likelihood) RCM estimator. The maximum likelihood estimator RCM performs well, even where the data were generated so that the RCM would be problematic. In an appendix, we show that the most common feasible generalized least squares estimator of the RCM models is always inferior to the maximum likelihood estimator, and in smaller samples dramatically so.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Coefficient Models for Time-Series–Cross-Section Data: Monte Carlo Experiments of Finite Sample Properties∗

This article considers random coefficient models (RCMs) for time-series–crosssection data. These models allow for unit to unit variation in the model parameters. The heart of the paper compares the finite sample properties of the fully pooled estimator, the unit by unit (unpooled) estimator and the (maximum likelihood) RCM estimator. The maximum likelihood estimator RCM performs well, even wher...

متن کامل

Generalized least squares estimation of panel with common shocks

This paper considers GLS estimation of linear panel models when the innovation and the regressors can both contain a factor structure. A novel feature of this approach is that preliminary estimation of the latent factor structure is not necessary. Under a set of regularity conditions here provided, we establish consistency and asymptotic normality of the feasible GLS estimator as both the cross...

متن کامل

Diagnostic Tests of Cross Section Independence for Limited Dependent Variable Panel Data Models∗

This paper considers the problem of testing for cross section independence in limited dependent variable panel data models. It derives a Lagrangian multiplier (LM) test and shows that in terms of generalized residuals of Gourieroux, Monfort, Renault and Trognon (1987) it reduces to the LM test of Breusch and Pagan (1980). Due to the tendency of the LM test to over-reject in panels with large N ...

متن کامل

Generalized Estimators of Stationary Random-coefficients Panel Datamodels: Asymptotic and Small Sample Properties

• This article provides generalized estimators for the random-coefficients panel data (RCPD) model where the errors are cross-sectional heteroskedastic and contemporaneously correlated as well as with the first-order autocorrelation of the time series errors. Of course, under the new assumptions of the error, the conventional estimators are not suitable for RCPD model. Therefore, the suitable e...

متن کامل

Bayesian Bandwidth Selection in Nonparametric Time - Varying Coefficient Models

Bandwidth plays an important role in determining the performance of local linear estimators. In this paper, we propose a Bayesian approach to bandwidth selection for local linear estimation of time–varying coefficient time series models, where the errors are assumed to follow the Gaussian kernel error density. A Markov chain Monte Carlo algorithm is presented to simultaneously estimate the band...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006